Satellites Communication
A satellite or an artificial satellite[a] is an object, typically a spacecraft, placed into orbit around a celestial body. They have a variety of uses, including communication relay, weather forecasting, navigation (GPS), broadcasting, scientific research, and Earth observation. Additional military uses are reconnaissance, early warning, signals intelligence and, potentially, weapon delivery. Other satellites include the final rocket stages that place satellites in orbit and formerly useful satellites that later become defunct.
Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotope thermoelectric generators (RTGs). Most satellites also have a method of communication to ground stations, called transponders. Many satellites use a standardized bus to save cost and work, the most popular of which are small CubeSats. Similar satellites can work together as groups, forming constellations. Because of the high launch cost to space, most satellites are designed to be as lightweight and robust as possible. Most communication satellites are radio relay stations in orbit and carry dozens of transponders, each with a bandwidth of tens of megahertz.
Spaceships become satellites by accelerating or decelerating to reach orbital vevelocities, occuping an orbit high enough to avoid orbital decay due to drag in the presence of an atmosphere and above their roche limit. Satellites are spacecrafts launched from the surface into space by launch systems. Satellites can then change or maintain the orbit by propulsion, usually by chemical or ion thrusters. As of 2018, about 90% of the satellites orbiting the Earth are in low Earth orbit or geostationary orbit; geostationary means the satellites stay still in the sky (relative to a fixed point on the ground). Some imaging satellites chose a Sun-synchronous orbit because they can scan the entire globe with similar lighting. As the number of satellites and space debris around Earth increases, the threat of collision has become more severe. An orbiter is a spacecraft that is designed to perform an orbital insertion, entering orbit around an astronomical body from another,[1] and as such becoming an artificial satellite. A small number of satellites orbit other bodies (such as the Moon, Mars, and the Sun) or many bodies at once (two for a halo orbit, three for a Lissajous orbit).
Earth observation satellites gather information for reconnaissance, mapping, monitoring the weather, ocean, forest, etc. Space telescopes take advantage of outer space's near perfect vacuum to observe objects with the entire electromagnetic spectrum. Because satellites can see a large portion of the Earth at once, communications satellites can relay information to remote places. The signal delay from satellites and their orbit's predictability are used in satellite navigation systems, such as GPS. Crewed spacecrafts which are in orbit or remain in orbit, like Space stations, are artificial satellites as well.
The first artificial satellite launched into the Earth's orbit was the Soviet Union's Sputnik 1, on October 4, 1957. As of December 31, 2022, there are 6,718 operational satellites in the Earth's orbit, of which 4,529 belong to the United States (3,996 commercial), 590 belong to China, 174 belong to Russia, and 1,425 belong to other nations.[2]
Components
Most satellites use chemical or ion propulsion to adjust or maintain their orbit,[6]: 78 coupled with reaction wheels to control their three axis of rotation or attitude. Satellites close to Earth are affected the most by variations in the Earth's magnetic, gravitational field and the Sun's radiation pressure; satellites that are further away are affected more by other bodies' gravitational field by the Moon and the Sun. Satellites utilize ultra-white reflective coatings to prevent damage from UV radiation.[25] Without orbit and orientation control, satellites in orbit will not be able to communicate with ground stations on the Earth.[6]: 75–76
Chemical thrusters on satellites usually use monopropellant (one-part) or bipropellant (two-parts) that are hypergolic. Hypergolic means able to combust spontaneously when in contact with each other or to a catalyst. The most commonly used propellant mixtures on satellites are hydrazine-based monopropellants or monomethylhydrazine–dinitrogen tetroxide bipropellants. Ion thrusters on satellites usually are Hall-effect thrusters, which generate thrust by accelerating positive ions through a negatively-charged grid. Ion propulsion is more efficient propellant-wise than chemical propulsion but its thrust is very small (around 0.5 N or 0.1 lbf), and thus requires a longer burn time. The thrusters usually use xenon because it is inert, can be easily ionized, has a high atomic mass and storable as a high-pressure liquid
Applications
Earth observation
Earth observation satellites are designed to monitor and survey the Earth, called remote sensing. Most Earth observation satellites are placed in low Earth orbit for a high data resolution, though some are placed in a geostationary orbit for an uninterrupted coverage. Some satellites are placed in a Sun-synchronous orbit to have consistent lighting and obtain a total view of the Earth. Depending on the satellites' functions, they might have a normal camera, radar, lidar, photometer, or atmospheric instruments. Earth observation satellite's data is most used in archaeology, cartography, environmental monitoring, meteorology, and reconnaissance applications.[citation needed] As of 2021, there are over 950 Earth observation satellites, with the largest number of satellites operated with Planet Labs.[26]
Communication
[edit]
Main article: Communications satellite
A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Earth. Communications satellites are used for television, telephone, radio, internet, and military applications.[28] Many communications satellites are in geostationary orbit 22,236 miles (35,785 km) above the equator, so that the satellite appears stationary at the same point in the sky; therefore the satellite dish antennas of ground stations can be aimed permanently at that spot and do not have to move to track the satellite. Others form satellite constellations in low Earth orbit, where antennas on the ground have to follow the position of the satellites and switch between satellites frequently.
The radio waves used for telecommunications links travel by line of sight and so are obstructed by the curve of the Earth. The purpose of communications satellites is to relay the signal around the curve of the Earth allowing communication between widely separated geographical points.[29] Communications satellites use a wide range of radio and microwave frequencies. To avoid signal interference, international organizations have regulations for which frequency ranges or "bands" certain organizations are allowed to use. This allocation of bands minimizes the risk of signal interference.[30]
Spy satellites
[edit]
Main article: Reconnaissance satellite
When an Earth observation satellite or a communications satellite is deployed for military or intelligence purposes, it is known as a spy satellite or reconnaissance satellite.
Their uses include early missile warning, nuclear explosion detection, electronic reconnaissance, and optical or radar imaging surveillance.
Navigation
[edit]
Main article: Satellite navigation
Navigational satellites are satellites that use radio time signals transmitted to enable mobile receivers on the ground to determine their exact location. The relatively clear line of sight between the satellites and receivers on the ground, combined with ever-improving electronics, allows satellite navigation systems to measure location to accuracies on the order of a few meters in real time.
Telescope
[edit]
Main article: Space telescope
Astronomical satellites are satellites used for observation of distant planets, galaxies, and other outer space objects.[31]
Experimental
[edit]
Tether satellites are satellites that are connected to another satellite by a thin cable called a tether. Recovery satellites are satellites that provide a recovery of reconnaissance, biological, space-production and other payloads from orbit to Earth. Biosatellites are satellites designed to carry living organisms, generally for scientific experimentation. Space-based solar power satellites are proposed satellites that would collect energy from sunlight and transmit it for use on Earth or other places.[citation needed]
Weapon
[edit]
Main articles: Space weapon, Anti-satellite weapon, and Early warning satellite
Since the mid-2000s, satellites have been hacked by militant organizations to broadcast propaganda and to pilfer classified information from military communication networks.[32][33] For testing purposes, satellites in low earth orbit have been destroyed by ballistic missiles launched from the Earth. Russia, United States, China and India have demonstrated the ability to eliminate satellites.[34] In 2007, the Chinese military shot down an aging weather satellite,[34] followed by the US Navy shooting down a defunct spy satellite in February 2008.[35] On 18 November 2015, after two failed attempts, Russia successfully carried out a flight test of an anti-satellite missile known as Nudol.[citation needed] On 27 March 2019, India shot down a live test satellite at 300 km altitude in 3 minutes, becoming the fourth country to have the capability to destroy live satellites.[36][37]
A communications satellite's transponder is the series of interconnected units that form a communications channel between the receiving and the transmitting antennas.[1] It is mainly used in satellite communication to transfer the received signals.
A transponder is typically composed of:
an input band-limiting device (an input band-pass filter),
an input low-noise amplifier (LNA), designed to amplify the signals received from the Earth station (normally very weak, because of the large distances involved),
a frequency translator (normally composed of an oscillator and a frequency mixer) used to convert the frequency of the received signal to the frequency required for the transmitted signal,
an output band-pass filter,
a power amplifier (this can be a traveling-wave tube or a solid-state amplifier).
Most communication satellites are radio relay stations in orbit and carry dozens of transponders, each with a bandwidth of tens of megahertz. Most transponders operate on a bent pipe (i.e., u-bend) principle, sending back to Earth what goes into the conduit with only amplification and a shift from uplink to downlink frequency. However, some modern satellites use on-board processing, where the signal is demodulated, decoded, re-encoded and modulated aboard the satellite. This type, called a "regenerative" transponder, is more complex, but has many advantages, such as improving the signal to noise ratio as the signal is regenerated from the digital domain, and also permits selective processing of the data in the digital domain.
With data compression and multiplexing, several video (including digital video) and audio channels may travel through a single transponder on a single wideband carrier.
Original analog video only had one channel per transponder, with subcarriers for audio and automatic transmission-identification service ATIS. Non-multiplexed radio stations can also travel in single channel per carrier (SCPC) mode, with multiple carriers (analog or digital) per transponder. This allows each station to transmit directly to the satellite, rather than paying for a whole transponder or using landlines to send it to an Earth station for multiplexing with other stations.
NASA distinguishes between a "transceiver" and "transponder". A transceiver has an independent transmitter and receiver packaged in the same unit. In a transponder the transmit carrier frequency is derived from the received signal. The frequency linkage allows an interrogating ground station to recover the Doppler shift and thus infer range and speed from a communication signal without allocating power to a separate ranging signal.[2]
Transponder equivalent
[edit]
A transponder equivalent (TPE) is a normalized way to refer to transponder bandwidth. It simply means how many transponders would be used if the same total bandwidths used only 36 MHz transponders.[3][4][5] So, for example, the ARSAT-1 has 24 IEEE Ku band transponders: 12 with a bandwidth of 36 MHz, 8 with 54 MHz, and 4 with 72 MHz, which totals to 1152 MHz, or 32 TPE (i.e., 1152 MHz divided by 36 MHz).
The relationship between the apogee (ra), perigee (rp), eccentricity (e), and the semi-major axis (a) of an elliptical orbit
Apogee (ra) and Perigee (rp) in terms of the semi-major axis (a) and eccentricity (e):
Where:
ra is the distance to the apogee (the farthest point from the central body).
rp is the distance to the perigee (the closest point to the central body).
a is the semi-major axis of the ellipse (half the longest diameter).
e is the eccentricity of the orbit, a measure of the orbit's deviation from a perfect circle.
Semi-major axis (a) in terms of apogee and perigee:
The semi-major axis a can be found by averaging the apogee and perigee distances:
Eccentricity (e) in terms of apogee and perigee:
The eccentricity e can be calculated from the apogee and perigee distances:
ϵ=\frac{-GM}{2a}
T^2∝a^3
\frac{GMm}{r^2}=\frac{mv^2}r
\frac{GM}{r^2}=\frac{v^2}r
\frac{GM}{r}={v^2}
\sqrt{ }\frac{GM}{r}={v}
u=GM≈398600 km3/s2.)
RE=6380 km,RE=6380km,
r1=RE+1620=6380+1620=8000 km
Last updated