Analogue Electronics Formulae
For an analog electronics exam, you'll need formulas covering key topics like circuit analysis, semiconductor devices, amplifiers, filters, and feedback systems. Below is a categorized list of essential formulas, their applications, and derivations where useful.
1. Basic Circuit Analysis
Ohm’s Law:
V=IRV = IRV=IR
Application: Used for solving simple resistor networks.
Kirchhoff’s Laws:
KVL (Kirchhoff’s Voltage Law): The sum of voltages in a closed loop is zero.
∑V=0\sum V = 0∑V=0
KCL (Kirchhoff’s Current Law): The sum of currents entering a node equals the sum of currents leaving.
∑I=0\sum I = 0∑I=0
Application: Used for analyzing circuits with multiple loops and nodes.
Thevenin’s & Norton’s Theorems:
Thevenin Equivalent Resistance:
Rth=VocIscR_{\text{th}} = \frac{V_{\text{oc}}}{I_{\text{sc}}}Rth=IscVoc
Norton Equivalent Current:
IN=VocRthI_{\text{N}} = \frac{V_{\text{oc}}}{R_{\text{th}}}IN=RthVoc
Application: Simplifies complex circuits into a single voltage or current source with equivalent resistance.
2. Diodes and Rectifiers
Diode Current Equation (Shockley Equation):
ID=IS(eVDnVT−1)I_D = I_S \left( e^{\frac{V_D}{nV_T}} -1 \right)ID=IS(enVTVD−1)
Where:
ISI_SIS = Reverse saturation current
VTV_TVT = Thermal voltage (≈25mV\approx 25mV≈25mV at 300K)
nnn = Ideality factor (1 for Si, 2 for Ge)
Application: Determines the current flowing through a diode for a given voltage.
Rectifier Circuits:
Half-wave rectifier output voltage (ideal):
Vdc=VmπV_{\text{dc}} = \frac{V_m}{\pi}Vdc=πVm
Full-wave rectifier output voltage (ideal):
Vdc=2VmπV_{\text{dc}} = \frac{2V_m}{\pi}Vdc=π2Vm
Ripple voltage for capacitor filter:
Vripple=IfCV_{\text{ripple}} = \frac{I}{fC}Vripple=fCI
Application: Used for AC-to-DC conversion.
3. Bipolar Junction Transistor (BJT)
DC Analysis of BJT:
Base current:
IB=VB−VBERBI_B = \frac{V_B - V_{BE}}{R_B}IB=RBVB−VBE
Collector current (active region):
IC=βIBI_C = \beta I_BIC=βIB
Emitter current:
IE=IC+IB=ICαI_E = I_C + I_B = \frac{I_C}{\alpha}IE=IC+IB=αIC
Where:
α=ββ+1\alpha = \frac{\beta}{\beta +1}α=β+1β
Application: Determines operating point in amplifier design.
AC Analysis (Small-Signal Model):
Transconductance:
gm=ICVTg_m = \frac{I_C}{V_T}gm=VTIC
Input resistance (common emitter amplifier):
rπ=βgmr_\pi = \frac{\beta}{g_m}rπ=gmβ
Voltage gain (CE amplifier):
Av=−βRCrπA_v = -\beta \frac{R_C}{r_\pi}Av=−βrπRC
Application: Used for designing BJT amplifiers.
4. Field Effect Transistor (FET & MOSFET)
DC Analysis of MOSFET (Saturation Region):
ID=12μnCoxWL(VGS−Vth)2I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2ID=21μnCoxLW(VGS−Vth)2
Application: Determines MOSFET operating point.
Small-Signal Model of MOSFET:
Transconductance:
gm=2IDVGS−Vthg_m = \frac{2I_D}{V_{GS} - V_{th}}gm=VGS−Vth2ID
Voltage gain:
Av=−gmRDA_v = -g_m R_DAv=−gmRD
Application: Used in MOSFET amplifier design.
5. Amplifiers
Common-Emitter Voltage Gain:
Av=−βRCrπA_v = -\beta \frac{R_C}{r_\pi}Av=−βrπRC
Derivation: Using small-signal model, Vout=−ICRCV_{\text{out}} = -I_C R_CVout=−ICRC, and IC=βIBI_C = \beta I_BIC=βIB, substituting IB=Vin/rπI_B = V_{\text{in}}/r_\piIB=Vin/rπ gives:
Av=−βRCrπA_v = -\beta \frac{R_C}{r_\pi}Av=−βrπRC
Gain-Bandwidth Product (for Op-Amps):
Gain×Bandwidth=constant\text{Gain} \times \text{Bandwidth} = \text{constant}Gain×Bandwidth=constant
Application: Used to determine op-amp stability and bandwidth.
6. Feedback and Stability
Closed-Loop Gain (Negative Feedback):
Af=A1+AβA_f = \frac{A}{1 + A \beta}Af=1+AβA
Where:
AAA = Open-loop gain
β\betaβ = Feedback factor
Application: Controls amplifier gain and bandwidth.
Bode Stability Criterion:
Phase margin:
PM=180∘+∠Loop Gain\text{PM} = 180^\circ + \angle \text{Loop Gain}PM=180∘+∠Loop Gain
Application: Ensures amplifier stability.
7. Filters and Frequency Response
First-Order Low-Pass Filter:
H(jω)=11+jωωcH(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}}H(jω)=1+jωcω1
Cutoff frequency:
ωc=1RC\omega_c = \frac{1}{RC}ωc=RC1
First-Order High-Pass Filter:
H(jω)=jωωc1+jωωcH(j\omega) = \frac{j\frac{\omega}{\omega_c}}{1 + j\frac{\omega}{\omega_c}}H(jω)=1+jωcωjωcω
Application: Designs active/passive filters.
8. Oscillators
Barkhausen Criterion:
Aβ=1,∠Aβ=0∘ or 360∘A \beta = 1, \quad \angle A\beta = 0^\circ \text{ or } 360^\circAβ=1,∠Aβ=0∘ or 360∘
Application: Ensures sustained oscillations in circuits.
Wien Bridge Oscillator Frequency:
f=12πRCf = \frac{1}{2\pi RC}f=2πRC1
Application: Used for sine wave generation.
9. Power Electronics
DC-DC Converter Efficiency:
η=PoutPin×100%\eta = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100\%η=PinPout×100%
Application: Analyzes power conversion efficiency.
Buck Converter Output Voltage:
Vout=DVinV_{\text{out}} = D V_{\text{in}}Vout=DVin
Application: Designs step-down regulators.
Final Tips for Application:
Understand Derivations – Many formulas come from circuit laws and small-signal models.
Use SPICE/LTspice Simulations – Verify results for circuit performance.
Memorize Key Expressions – Focus on amplifier gains, filter cutoffs, and transistor models.
Practice Complex Problems – Solve past exam questions to solidify concepts.
Last updated