telecom
  • Welcome
  • 5.1
    • ECE 521:Wireless Communication Systems
      • Projects and Practical Skills
        • Software-based Projects
          • Simulated Paging System (Python-Based)
          • Mobile Network Simulation
    • ECE 252:Analogue Electronics
      • Simulation On Windows
      • FeedBack
      • Field Effect Transistors (FETs)
      • Analogue Electronics Formulae
    • Serial Communication
Powered by GitBook
On this page
  • 1. Basic Circuit Analysis
  • 2. Diodes and Rectifiers
  • 3. Bipolar Junction Transistor (BJT)
  • 4. Field Effect Transistor (FET & MOSFET)
  • 5. Amplifiers
  • 6. Feedback and Stability
  • 7. Filters and Frequency Response
  • 8. Oscillators
  • 9. Power Electronics
  • Final Tips for Application:
  1. 5.1
  2. ECE 252:Analogue Electronics

Analogue Electronics Formulae

For an analog electronics exam, you'll need formulas covering key topics like circuit analysis, semiconductor devices, amplifiers, filters, and feedback systems. Below is a categorized list of essential formulas, their applications, and derivations where useful.


1. Basic Circuit Analysis

Ohm’s Law:

V=IRV = IRV=IR

  • Application: Used for solving simple resistor networks.

Kirchhoff’s Laws:

  • KVL (Kirchhoff’s Voltage Law): The sum of voltages in a closed loop is zero.

∑V=0\sum V = 0∑V=0

  • KCL (Kirchhoff’s Current Law): The sum of currents entering a node equals the sum of currents leaving.

∑I=0\sum I = 0∑I=0

  • Application: Used for analyzing circuits with multiple loops and nodes.

Thevenin’s & Norton’s Theorems:

  • Thevenin Equivalent Resistance:

Rth=VocIscR_{\text{th}} = \frac{V_{\text{oc}}}{I_{\text{sc}}}Rth​=Isc​Voc​​

  • Norton Equivalent Current:

IN=VocRthI_{\text{N}} = \frac{V_{\text{oc}}}{R_{\text{th}}}IN​=Rth​Voc​​

  • Application: Simplifies complex circuits into a single voltage or current source with equivalent resistance.


2. Diodes and Rectifiers

Diode Current Equation (Shockley Equation):

ID=IS(eVDnVT−1)I_D = I_S \left( e^{\frac{V_D}{nV_T}} -1 \right)ID​=IS​(enVT​VD​​−1)

Where:

  • ISI_SIS​ = Reverse saturation current

  • VTV_TVT​ = Thermal voltage (≈25mV\approx 25mV≈25mV at 300K)

  • nnn = Ideality factor (1 for Si, 2 for Ge)

  • Application: Determines the current flowing through a diode for a given voltage.

Rectifier Circuits:

  • Half-wave rectifier output voltage (ideal):

Vdc=VmπV_{\text{dc}} = \frac{V_m}{\pi}Vdc​=πVm​​

  • Full-wave rectifier output voltage (ideal):

Vdc=2VmπV_{\text{dc}} = \frac{2V_m}{\pi}Vdc​=π2Vm​​

  • Ripple voltage for capacitor filter:

Vripple=IfCV_{\text{ripple}} = \frac{I}{fC}Vripple​=fCI​

  • Application: Used for AC-to-DC conversion.


3. Bipolar Junction Transistor (BJT)

DC Analysis of BJT:

  • Base current:

IB=VB−VBERBI_B = \frac{V_B - V_{BE}}{R_B}IB​=RB​VB​−VBE​​

  • Collector current (active region):

IC=βIBI_C = \beta I_BIC​=βIB​

  • Emitter current:

IE=IC+IB=ICαI_E = I_C + I_B = \frac{I_C}{\alpha}IE​=IC​+IB​=αIC​​

Where:

α=ββ+1\alpha = \frac{\beta}{\beta +1}α=β+1β​

  • Application: Determines operating point in amplifier design.

AC Analysis (Small-Signal Model):

  • Transconductance:

gm=ICVTg_m = \frac{I_C}{V_T}gm​=VT​IC​​

  • Input resistance (common emitter amplifier):

rπ=βgmr_\pi = \frac{\beta}{g_m}rπ​=gm​β​

  • Voltage gain (CE amplifier):

Av=−βRCrπA_v = -\beta \frac{R_C}{r_\pi}Av​=−βrπ​RC​​

  • Application: Used for designing BJT amplifiers.


4. Field Effect Transistor (FET & MOSFET)

DC Analysis of MOSFET (Saturation Region):

ID=12μnCoxWL(VGS−Vth)2I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{th})^2ID​=21​μn​Cox​LW​(VGS​−Vth​)2

  • Application: Determines MOSFET operating point.

Small-Signal Model of MOSFET:

  • Transconductance:

gm=2IDVGS−Vthg_m = \frac{2I_D}{V_{GS} - V_{th}}gm​=VGS​−Vth​2ID​​

  • Voltage gain:

Av=−gmRDA_v = -g_m R_DAv​=−gm​RD​

  • Application: Used in MOSFET amplifier design.


5. Amplifiers

Common-Emitter Voltage Gain:

Av=−βRCrπA_v = -\beta \frac{R_C}{r_\pi}Av​=−βrπ​RC​​

  • Derivation: Using small-signal model, Vout=−ICRCV_{\text{out}} = -I_C R_CVout​=−IC​RC​, and IC=βIBI_C = \beta I_BIC​=βIB​, substituting IB=Vin/rπI_B = V_{\text{in}}/r_\piIB​=Vin​/rπ​ gives:

Av=−βRCrπA_v = -\beta \frac{R_C}{r_\pi}Av​=−βrπ​RC​​

Gain-Bandwidth Product (for Op-Amps):

Gain×Bandwidth=constant\text{Gain} \times \text{Bandwidth} = \text{constant}Gain×Bandwidth=constant

  • Application: Used to determine op-amp stability and bandwidth.


6. Feedback and Stability

Closed-Loop Gain (Negative Feedback):

Af=A1+AβA_f = \frac{A}{1 + A \beta}Af​=1+AβA​

Where:

  • AAA = Open-loop gain

  • β\betaβ = Feedback factor

  • Application: Controls amplifier gain and bandwidth.

Bode Stability Criterion:

  • Phase margin:

PM=180∘+∠Loop Gain\text{PM} = 180^\circ + \angle \text{Loop Gain}PM=180∘+∠Loop Gain

  • Application: Ensures amplifier stability.


7. Filters and Frequency Response

First-Order Low-Pass Filter:

H(jω)=11+jωωcH(j\omega) = \frac{1}{1 + j\frac{\omega}{\omega_c}}H(jω)=1+jωc​ω​1​

  • Cutoff frequency:

ωc=1RC\omega_c = \frac{1}{RC}ωc​=RC1​

First-Order High-Pass Filter:

H(jω)=jωωc1+jωωcH(j\omega) = \frac{j\frac{\omega}{\omega_c}}{1 + j\frac{\omega}{\omega_c}}H(jω)=1+jωc​ω​jωc​ω​​

  • Application: Designs active/passive filters.


8. Oscillators

Barkhausen Criterion:

Aβ=1,∠Aβ=0∘ or 360∘A \beta = 1, \quad \angle A\beta = 0^\circ \text{ or } 360^\circAβ=1,∠Aβ=0∘ or 360∘

  • Application: Ensures sustained oscillations in circuits.

Wien Bridge Oscillator Frequency:

f=12πRCf = \frac{1}{2\pi RC}f=2πRC1​

  • Application: Used for sine wave generation.


9. Power Electronics

DC-DC Converter Efficiency:

η=PoutPin×100%\eta = \frac{P_{\text{out}}}{P_{\text{in}}} \times 100\%η=Pin​Pout​​×100%

  • Application: Analyzes power conversion efficiency.

Buck Converter Output Voltage:

Vout=DVinV_{\text{out}} = D V_{\text{in}}Vout​=DVin​

  • Application: Designs step-down regulators.


Final Tips for Application:

  1. Understand Derivations – Many formulas come from circuit laws and small-signal models.

  2. Use SPICE/LTspice Simulations – Verify results for circuit performance.

  3. Memorize Key Expressions – Focus on amplifier gains, filter cutoffs, and transistor models.

  4. Practice Complex Problems – Solve past exam questions to solidify concepts.

PreviousField Effect Transistors (FETs)NextSerial Communication

Last updated 3 months ago