✅ Why do we need Linear Programming?

To optimize use of limited resources To help in strategic decision-making Common in manufacturing, transportation, finance, and logistics

📦 Example Problem: Chocolate Manufacturing Company

🟤 Produces Two Chocolates: A and B

Each unit of A and B requires:

  • Milk and Cocoa (quantities shown below)

Chocolate
Milk (units)
Cocoa (units)
Profit per unit

A

1

3

₹6

B

1

2

₹5

Total resources available:

  • Milk: 5 units

  • Cocoa: 12 units

✅ Step 1: Define Variables

Let:

  • x = number of units of chocolate A

  • y = number of units of chocolate B


✅ Step 2: Objective Function

Maximize Profit:

Z=6x+5y


✅ Step 3: Constraints

  1. Milk constraint: x+y ≤ 5

  2. Cocoa constraint: 3x+2y ≤ 12

  3. Non-negativity: x≥0, y≥0


✅ Step 4: Find Corner Points

Let’s solve the system manually by checking intercepts and intersections:


🔹 Constraint 1: x+y=5

  • If x=0 , then y=5

  • If y=0, then x=5

Line passes through (0, 5) and (5, 0)


🔹 Constraint 2: 3x+2y=12

  • If x=0x = 0x=0, then 2y=12⇒y=62y = 12 \Rightarrow y = 62y=12⇒y=6

  • If y=0y = 0y=0, then 3x=12⇒x=43x = 12 \Rightarrow x = 43x=12⇒x=4

Line passes through (0, 6) and (4, 0)


🔹 Find Point of Intersection

Solve:

  1. x+y=5

  2. 3x+2y=12

Substitute y=5−x into 2:

3x+2(5−x)=123x+10−2x=12x=2⇒y=33x + 2(5 - x) = 12 \\ 3x + 10 - 2x = 12 \\ x = 2 \Rightarrow y = 33x+2(5−x)=123x+10−2x=12x=2⇒y=3

🟢 Intersection point: (2,3)


✅ Step 5: Evaluate Profit at Feasible Points

Check all corner points of the feasible region:

Point

Check x+y≤5x + y \leq 5x+y≤5

3x+2y≤123x + 2y \leq 123x+2y≤12

Z=6x+5yZ = 6x + 5yZ=6x+5y

(0, 0)

0

(0, 5)

3(0)+2(5)=10≤123(0) + 2(5) = 10 \leq 123(0)+2(5)=10≤12 ✅

25

(5, 0)

3(5)=15>123(5) = 15 > 123(5)=15>12 ❌

-

(4, 0)

24

(2, 3)

6×2+5×3=12+15=276×2 + 5×3 = 12 + 15 = 276×2+5×3=12+15=27 ✅


✅ Final Answer:

  • Optimal solution: x=2, y=3x = 2,\ y = 3x=2, y=3

  • Produce:

    • 2 units of Chocolate A

    • 3 units of Chocolate B

  • Maximum Profit: ₹27

Last updated